
Chapter 1

A Review of Analytical Mechanics

1.1 Introduction

These lecture notes cover the third course in Classical Mechanics, taught at MIT since
the Fall of 2012 by Professor Stewart to advanced undergraduates (course 8.09) as well as
to graduate students (course 8.309). In the prerequisite classical mechanics II course the
students are taught both Lagrangian and Hamiltonian dynamics, including Kepler bound
motion and central force scattering, and the basic ideas of canonical transformations. This
course briefly reviews the needed concepts, but assumes some familiarity with these ideas.
References used for this course include

• Goldstein, Poole & Safko, Classical Mechanics, 3rd edition.

• Landau and Lifshitz vol.6, Fluid Mechanics. Symon, Mechanics for reading material
on non-viscous fluids.

• Strogatz, Nonlinear Dynamics and Chaos.

• Review: Landau & Lifshitz vol.1, Mechanics. (Typically used for the prerequisite
Classical Mechanics II course and hence useful here for review)

1.2 Lagrangian & Hamiltonian Mechanics

Newtonian Mechanics

In Newtonian mechanics, the dynamics of a system of N particles are determined by solving
for their coordinate trajectories as a function of time. This can be done through the usual
vector spatial coordinates ri(t) for i ∈ {1, . . . , N}, or with generalized coordinates qi(t) for
i ∈ {1, . . . , 3N} in 3-dimensional space; generalized coordinates could be angles, et cetera.
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Velocities are represented through vi ≡ ṙi for spatial coordinates, or through q̇i for
generalized coordinates. Note that dots above a symbol will always denote the total time
derivative d . Momenta are likewise either Newtonian pi = mivi or generalized pi.dt

For a fixed set of masses m Newton’s 2nd
i law can be expressed in 2 equivalent ways:

1. It can be expressed as N second-order equations Fi = d (miṙi) with 2N boundary
dt

conditions given in ri(0) and ṙi(0). The problem then becomes one of determining the
N vector variables ri(t).

2. It can also be expressed as an equivalent set of 2N 1st order equations Fi = ṗi &
pi/mi = ṙi with 2N boundary conditions given in ri(0) and pi(0). The problem then
becomes one of determining the 2N vector variables ri(t) and pi(t).

Note that F = ma holds in inertial frames. These are frames where the motion of a
particle not subject to forces is in a straight line with constant velocity. The converse does not
hold. Inertial frames describe time and space homogeneously (invariant to displacements),
isotropically (invariant to rotations), and in a time independent manner. Noninertial frames
also generically have fictitious “forces”, such as the centrifugal and Coriolis effects. (Inertial
frames also play a key role in special relativity. In general relativity the concept of inertial
frames is replaced by that of geodesic motion.)

The existence of an inertial frame is a useful approximation for working out the dynam-
ics of particles, and non-inertial terms can often be included as perturbative corrections.
Examples of approximate inertial frames are that of a fixed Earth, or better yet, of fixed
stars. We can still test for how noninertial we are by looking for fictitious forces that (a) may
point back to an origin with no source for the force or (b) behave in a non-standard fashion
in different frames (i.e. they transform in a strange manner when going between different
frames).

We will use primes will denote coordinate transformations. If r is measured in an inertial
frame S, and r′ is measured in frame S ′ with relation to S by a transformation r′ = f(r, t),
then S ′ is inertial iff r̈ = 0 ↔ r̈′ = 0. This is solved by the Galilean transformations,

r′ = r + v0t

t′ = t,

which preserves the inertiality of frames, with F = mr̈ and F′ = mr̈′ implying each other.
Galilean transformations are the non-relativistic limit, v � c, of Lorentz transformations
which preserve inertial frames in special relativity. A few examples related to the concepts
of inertial frames are:

1. In a rotating frame, the transformation[ is given by

x′

y′

]
=

[
cos(θ) sin(θ) x
− sin(θ) cos(θ)

] [
y

]
If θ = ωt for some constant ω, then r̈ = 0 still gives r̈′ 6= 0, so the primed frame is
noninertial.
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Figure 1.1: Frame rotated by an angle θ

2. In polar coordinates, r = rr̂, gives

dr̂ ˆdθ˙ˆ= θθ,
dt

˙= −θr̂ (1.1)
dt

and thus
¨ ˙ˆ ¨ˆ ˙r = r̈r̂ + 2ṙθθ + r θθ − θ2r̂ . (1.2)

Even if ¨ ¨r = 0 we can still have r̈ 6= 0 and θ

( )
6= 0, and we can not in general form

a simple Newtonian force law equation mq̈ = Fq for each of these coordinates. This
is different than the first example, since here we are picking coordinates rather than
changing the reference frame, so to remind ourselves about their behavior we will call
these ”non-inertial coordinates” (which we may for example decide to use in an inertial
frame). In general, curvilinear coordinates are non-inertial.

Lagrangian Mechanics

In Lagrangian mechanics, the key function is the Lagrangian

L = L(q, q̇, t). (1.3)

Here, q = (q1, . . . , qN) and likewise q̇ = (q̇1, . . . , q̇N). We are now letting N denote the
number of scalar (rather than vector) variables, and will often use the short form to denote
dependence on these variables, as in Eq. (1.3). Typically we can write L = T − V where
T is the kinetic energy and V is the potential energy. In the simplest cases, T = T (q̇)
and V = V (q), but we also allow the more general possibility that T = T (q, q̇, t) and
V = V (q, q̇, t). It turns out, as we will discuss later, that even this generalization does not
describe all possible classical mechanics problems.

The solution to a given mechanical problem is obtained by solving a set of N second-order
differential equations known as Euler-Lagrange equations of motion,

d ∂

dt

(
L ∂

∂q̇i

)
L− = 0. (1.4)
∂qi
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These equations involve q̈i, and reproduce the Newtonian equations F = ma. The principle
of stationary action (Hamilton’s principle),

t2

δS = δ

∫
L(q, q̇, t) dt = 0, (1.5)

t1

is the starting point for deriving the Euler-Lagrange equations. Although you have covered
the Calculus of Variations in an earlier course on Classical Mechanics, we will review the
main ideas in Section 1.5.

There are several advantages to working with the Lagrangian formulation, including

1. It is easier to work with the scalars T and V rather than vectors like F.

2. The same formula in equation (1.4) holds true regardless of the choice of coordinates.
To demonstrate this, let us consider new coordinates

Qi = Qi(q1, . . . , qN , t). (1.6)

This particular sort of transformation is called a point transformation. Defining the
new Lagrangian by

L′ = L′ ˙(Q,Q, t) = L(q, q̇, t), (1.7)

we claim that the equations of motion are simply

d ∂

dt

(
L′ ∂
˙∂Qi

)
L′− = 0. (1.8)

∂Qi

Proof: (for N = 1, since the generalization is straightforward)
Given L′ ˙(Q,Q, t) = L(q, q̇, t) with Q = Q(q, t) then

d
Q̇ =

∂Q
Q(q, t) =

dt

∂Q
q̇ +

∂q
. (1.9)

∂t

Therefore

˙∂Q ∂Q
=

∂q̇
, (1.10)

∂q

a result that we will use again in the future. Then

∂L ∂L′
=

∂q

∂L′
=

∂q

∂Q

∂Q

∂L′
+

∂q

˙∂Q
˙∂Q

, (1.11)
∂q

∂L ∂L′
=

∂q̇

∂L′
=

∂q̇

˙∂Q
˙∂Q

∂L′
=

∂q̇

∂Q
˙∂Q

.
∂q
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Since ∂Q ′
= 0 there is no term ∂L

∂q̇
∂Q

∂Q
in the last line.

∂q̇

Plugging these results into 0 = d ∂
dt

(
L ∂
∂q̇

)
− L gives

∂q

0 =

[
d
(
∂L′

dt

∂
˙∂Q

)
Q ∂L′

+
∂q

d
˙∂Q

∂

dt

(
Q ∂

∂q

)]
−
[
L′ ∂Q

∂Q

∂L′
+

∂q

˙∂Q
˙∂Q[ ∂q

d

]
=

∂

dt

(
L′ ∂
˙∂Q

)
L′− ∂

∂Q

]
Q
, (1.12)

∂q

since d ∂Q
dt

= (q̇ ∂
∂q

+ ∂
∂q

)∂Q
∂t

= ∂
∂q

(q̇ ∂
∂q

+ ∂
∂q

˙
)Q = ∂Q

∂t
so that the second and fourth terms

∂q

cancel. Finally for non-trivial transformation where ∂Q =
∂q
6 0 we have, as expected,

d
0 =

∂

dt

(
L′ ∂
˙∂Q

)
L′− . (1.13)
∂Q

Note two things:

• This implies we can freely use the Euler-Lagrange equations for noninertial coor-
dinates.

• We can formulate L in whatever coordinates are easiest, and then change to
convenient variables that better describe the symmetry of a system (for example,
Cartesian to spherical).

3. Continuing our list of advantages for using L, we note that it is also easy to incorporate
constraints. Examples include a mass constrained to a surface or a disk rolling without
slipping. Often when using L we can avoid discussing forces of constraint (for example,
the force normal to the surface).

Lets discuss the last point in more detail (we will also continue to discuss it in the next
section). The method for many problems with constraints is to simply make a good choice for
the generalized coordinates to use for the Lagrangian, picking N − k independent variables
qi for a system with k constraints.

Example: For a bead on a helix as in Fig. 1.2 we only need one variable, q1 = z.

Example: A mass m2 attached by a massless pendulum to a horizontally sliding mass m1

as in Fig. 1.3, can be described with two variables q1 = x and q2 = θ.

Example: As an example using non-inertial coordinates consider a potential V = V (r, θ)
˙ˆin polar coordinates for a fixed mass m at position r = rr̂. Since ṙ = ṙr̂ + rθθ we have

T = m ṙ2 = m
2

˙ṙ
2

(
2 + r2θ2

)
, giving

m
L = ˙ṙ

2

(
2 + r2θ2

)
− V (r, θ). (1.14)
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